Loading... <div class="tip inlineBlock error"> 这里是ipynb格式:[4.pandas数据查询.html](http://type.zimopy.com/usr/uploads/2022/12/3933926259.html) </div> 下面是md格式 # Pandas查询数据 按数值、列表、区间、条件、函数五种 # Pandas查询数据的几种方法 1. df.loc方法,根据行、列的标签值查询 2. df.iloc方法,根据行、列的数字位置查询 3. df.where方法 4. df.query方法 .loc既能查询,又能覆盖写入 # Pandas使用df.loc查询数据的方法 1. 使用单个lable值查询数据 2. 使用值列表批量查询 3. 使用数值区间进行范围查询 4. 使用条件表达式查询 5. 调用函数查询 # 注意 以上查询方法,既适用于行,也适用于列 注意观察降维dataFram>Series>值 ```python import pandas as pd ``` # 1.读取数据 数据为北京2018年全年天气预报 ```python df = pd.read_csv("../datas/beijing_tianqi/beijing_tianqi_2018.csv") df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ymd</th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2018-01-01</td> <td>3℃</td> <td>-6℃</td> <td>晴~多云</td> <td>东北风</td> <td>1-2级</td> <td>59</td> <td>良</td> <td>2</td> </tr> <tr> <th>1</th> <td>2018-01-02</td> <td>2℃</td> <td>-5℃</td> <td>阴~多云</td> <td>东北风</td> <td>1-2级</td> <td>49</td> <td>优</td> <td>1</td> </tr> <tr> <th>2</th> <td>2018-01-03</td> <td>2℃</td> <td>-5℃</td> <td>多云</td> <td>北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>3</th> <td>2018-01-04</td> <td>0℃</td> <td>-8℃</td> <td>阴</td> <td>东北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>4</th> <td>2018-01-05</td> <td>3℃</td> <td>-6℃</td> <td>多云~晴</td> <td>西北风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> </tbody> </table> </div> ## 设定索引为日期,方便按日期筛选 ```python df.set_index("ymd",inplace=True) # 参数解释 # 主要参数: # keys:需要设置为index的列名 # drop:True or False。将某列设置为index后,是否删除原来的该列。默认为True,即删除(Delete columns to be used as the new index.) # append:True or False。新的index设置之后,是否要删除原来的index。默认为True。(Whether to append columns to existing index.) # inplace:True or False。是否要用新的DataFrame取代原来的DataFrame。默认False,即不取代 ``` ```python # 时间序列见后面课程 df.index ``` Index(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08', '2018-01-09', '2018-01-10', ... '2018-12-22', '2018-12-23', '2018-12-24', '2018-12-25', '2018-12-26', '2018-12-27', '2018-12-28', '2018-12-29', '2018-12-30', '2018-12-31'], dtype='object', name='ymd', length=365) ```python df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-01-01</th> <td>3℃</td> <td>-6℃</td> <td>晴~多云</td> <td>东北风</td> <td>1-2级</td> <td>59</td> <td>良</td> <td>2</td> </tr> <tr> <th>2018-01-02</th> <td>2℃</td> <td>-5℃</td> <td>阴~多云</td> <td>东北风</td> <td>1-2级</td> <td>49</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-03</th> <td>2℃</td> <td>-5℃</td> <td>多云</td> <td>北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-04</th> <td>0℃</td> <td>-8℃</td> <td>阴</td> <td>东北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-05</th> <td>3℃</td> <td>-6℃</td> <td>多云~晴</td> <td>西北风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> </tbody> </table> </div> ## 替换掉温度的后缀℃ ```python df.loc[:,"bWendu"] = df["bWendu"].str.replace("℃","").astype("int32") df.loc[:,"yWendu"] = df["yWendu"].str.replace("℃","").astype("int32") #拓展 # 以下是一些使用示例: # df.index.astype('int64') # 索引类型转换 # df.astype('int32') # 所有数据转换为int32 # df.astype({'col1':'int32'}) # 指定字段转指定类型 # s.astype('int64') # s.astype('int64',copy = False) # 不与原数据关联 # df['name'].astype('object') # data['Q4'].astype('float') # s.astype('datatime64[ns]') # 转为时间类型 # data['状态'].astype('bool') ``` ```python df.dtypes ``` bWendu int32 yWendu int32 tianqi object fengxiang object fengli object aqi int64 aqiInfo object aqiLevel int64 dtype: object ```python df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-01-01</th> <td>3</td> <td>-6</td> <td>晴~多云</td> <td>东北风</td> <td>1-2级</td> <td>59</td> <td>良</td> <td>2</td> </tr> <tr> <th>2018-01-02</th> <td>2</td> <td>-5</td> <td>阴~多云</td> <td>东北风</td> <td>1-2级</td> <td>49</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-03</th> <td>2</td> <td>-5</td> <td>多云</td> <td>北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-04</th> <td>0</td> <td>-8</td> <td>阴</td> <td>东北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-05</th> <td>3</td> <td>-6</td> <td>多云~晴</td> <td>西北风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>2018-12-27</th> <td>-5</td> <td>-12</td> <td>多云~晴</td> <td>西北风</td> <td>3级</td> <td>48</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-28</th> <td>-3</td> <td>-11</td> <td>晴</td> <td>西北风</td> <td>3级</td> <td>40</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-29</th> <td>-3</td> <td>-12</td> <td>晴</td> <td>西北风</td> <td>2级</td> <td>29</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-30</th> <td>-2</td> <td>-11</td> <td>晴~多云</td> <td>东北风</td> <td>1级</td> <td>31</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-31</th> <td>-2</td> <td>-10</td> <td>多云</td> <td>东北风</td> <td>1级</td> <td>56</td> <td>良</td> <td>2</td> </tr> </tbody> </table> <p>365 rows × 8 columns</p> </div> # 2.使用单个lable值查询数据 行或者都可以只传入单个值,实现精确匹配 ## 得到单个值 ```python df.loc["2018-01-03","bWendu"] ``` 2 ## 得到一个Series ```python df.loc["2018-01-03",["bWendu","yWendu"]] ``` bWendu 2 yWendu -5 Name: 2018-01-03, dtype: object # 3.使用值列表批量查询 ## 得到Series ```python df.loc[["2018-01-04","2018-01-05","2018-01-05"],"bWendu"] ``` ymd 2018-01-04 0 2018-01-05 3 2018-01-05 3 Name: bWendu, dtype: int32 ## 得到DateFrame ```python df.loc[["2018-01-03","2018-01-04","2018-01-05"],["bWendu","yWendu"]] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-01-03</th> <td>2</td> <td>-5</td> </tr> <tr> <th>2018-01-04</th> <td>0</td> <td>-8</td> </tr> <tr> <th>2018-01-05</th> <td>3</td> <td>-6</td> </tr> </tbody> </table> </div> # 4.使用数值区间进行范围查询 注意:区间即包括开始,也包含结束 ## 行index按区间 ```python df.loc["2018-01-03":"2018-01-05","bWendu"] ``` ymd 2018-01-03 2 2018-01-04 0 2018-01-05 3 Name: bWendu, dtype: int32 ## 列index按区间 ```python df.loc["2018-01-03","bWendu":"fengxiang"] ``` bWendu 2 yWendu -5 tianqi 多云 fengxiang 北风 Name: 2018-01-03, dtype: object ## 行和列都按区间查询 ```python df.loc["2018-01-03":"2018-01-05","bWendu":"fengxiang"] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-01-03</th> <td>2</td> <td>-5</td> <td>多云</td> <td>北风</td> </tr> <tr> <th>2018-01-04</th> <td>0</td> <td>-8</td> <td>阴</td> <td>东北风</td> </tr> <tr> <th>2018-01-05</th> <td>3</td> <td>-6</td> <td>多云~晴</td> <td>西北风</td> </tr> </tbody> </table> </div> # 4.条件表达式查询 bool列表的长度得等于行数或者列数 ## 简单条件查询,最低温度低于-10度的列表 ```python df.loc[df["yWendu"]<-10,:] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-01-23</th> <td>-4</td> <td>-12</td> <td>晴</td> <td>西北风</td> <td>3-4级</td> <td>31</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-24</th> <td>-4</td> <td>-11</td> <td>晴</td> <td>西南风</td> <td>1-2级</td> <td>34</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-01-25</th> <td>-3</td> <td>-11</td> <td>多云</td> <td>东北风</td> <td>1-2级</td> <td>27</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-26</th> <td>-2</td> <td>-11</td> <td>晴~多云</td> <td>东北风</td> <td>2级</td> <td>26</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-27</th> <td>-5</td> <td>-12</td> <td>多云~晴</td> <td>西北风</td> <td>3级</td> <td>48</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-28</th> <td>-3</td> <td>-11</td> <td>晴</td> <td>西北风</td> <td>3级</td> <td>40</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-29</th> <td>-3</td> <td>-12</td> <td>晴</td> <td>西北风</td> <td>2级</td> <td>29</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-12-30</th> <td>-2</td> <td>-11</td> <td>晴~多云</td> <td>东北风</td> <td>1级</td> <td>31</td> <td>优</td> <td>1</td> </tr> </tbody> </table> </div> ## 观察boolean条件 ```python df["yWendu"]<-10 ``` ymd 2018-01-01 False 2018-01-02 False 2018-01-03 False 2018-01-04 False 2018-01-05 False ... 2018-12-27 True 2018-12-28 True 2018-12-29 True 2018-12-30 True 2018-12-31 False Name: yWendu, Length: 365, dtype: bool ## 复杂条件查询 > 注意,组合条件用&符号合并,每个条件判断都得 **带括号 ```python # 查询最高温度小于30度,并且最低温度大于15度,还得是晴天。天气为优的数据 # 多个参数查询,可以先把格式写好,比如我们查询的是所有列df.loc[,:]然后在,号前面写条件表达式 df.loc[(df["bWendu"]<=30)&(df["yWendu"]>=15)&(df["tianqi"]=="晴")&(df["aqiLevel"]==1),:] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-08-24</th> <td>30</td> <td>20</td> <td>晴</td> <td>北风</td> <td>1-2级</td> <td>40</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-07</th> <td>27</td> <td>16</td> <td>晴</td> <td>西北风</td> <td>3-4级</td> <td>22</td> <td>优</td> <td>1</td> </tr> </tbody> </table> </div> ```python # 再次观察这里的boolean条件 (df["bWendu"]<=30)&(df["yWendu"]>=15)&(df["tianqi"]=="晴")&(df["aqiLevel"]==1) ``` ymd 2018-01-01 False 2018-01-02 False 2018-01-03 False 2018-01-04 False 2018-01-05 False ... 2018-12-27 False 2018-12-28 False 2018-12-29 False 2018-12-30 False 2018-12-31 False Length: 365, dtype: bool # 5.调用函数查询 ```python # lambda表达式 # lambda:输入是传入到参数列表x的值,输出是根据表达式(expression)计算得到的值。 # 比如:lambda x, y: xy #函数输入是x和y,输出是它们的积xy # lambda x :x[-2:] #x是字符串时,输出字符串的后两位 # lambda x :func #输入 x,通过函数计算后返回结果 # lambda x: ‘%.2f’ % x # 对结果保留两位小数 df.loc[lambda row:(df["bWendu"]<=30)&(df["yWendu"]>=15),:] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-04-28</th> <td>27</td> <td>17</td> <td>晴</td> <td>西南风</td> <td>3-4级</td> <td>125</td> <td>轻度污染</td> <td>3</td> </tr> <tr> <th>2018-04-29</th> <td>30</td> <td>16</td> <td>多云</td> <td>南风</td> <td>3-4级</td> <td>193</td> <td>中度污染</td> <td>4</td> </tr> <tr> <th>2018-05-04</th> <td>27</td> <td>16</td> <td>晴~多云</td> <td>西南风</td> <td>1-2级</td> <td>86</td> <td>良</td> <td>2</td> </tr> <tr> <th>2018-05-09</th> <td>29</td> <td>17</td> <td>晴~多云</td> <td>西南风</td> <td>3-4级</td> <td>79</td> <td>良</td> <td>2</td> </tr> <tr> <th>2018-05-10</th> <td>26</td> <td>18</td> <td>多云</td> <td>南风</td> <td>3-4级</td> <td>118</td> <td>轻度污染</td> <td>3</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>2018-09-15</th> <td>26</td> <td>15</td> <td>多云</td> <td>北风</td> <td>3-4级</td> <td>42</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-17</th> <td>27</td> <td>17</td> <td>多云~阴</td> <td>北风</td> <td>1-2级</td> <td>37</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-18</th> <td>25</td> <td>17</td> <td>阴~多云</td> <td>西南风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-19</th> <td>26</td> <td>17</td> <td>多云</td> <td>南风</td> <td>1-2级</td> <td>52</td> <td>良</td> <td>2</td> </tr> <tr> <th>2018-09-20</th> <td>27</td> <td>16</td> <td>多云</td> <td>西南风</td> <td>1-2级</td> <td>63</td> <td>良</td> <td>2</td> </tr> </tbody> </table> <p>64 rows × 8 columns</p> </div> ```python # 查询9月份,空气质量好的数据 def query_data(df): return (df.index.str.startswith("2018-09")) & (df["aqiLevel"]==1) # startswith:这个是字符串开始的匹配方式 # query_data(df) # 查看条件返回数据 df.loc[query_data,:] ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>bWendu</th> <th>yWendu</th> <th>tianqi</th> <th>fengxiang</th> <th>fengli</th> <th>aqi</th> <th>aqiInfo</th> <th>aqiLevel</th> </tr> <tr> <th>ymd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>2018-09-01</th> <td>27</td> <td>19</td> <td>阴~小雨</td> <td>南风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-04</th> <td>31</td> <td>18</td> <td>晴</td> <td>西南风</td> <td>3-4级</td> <td>24</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-05</th> <td>31</td> <td>19</td> <td>晴~多云</td> <td>西南风</td> <td>3-4级</td> <td>34</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-06</th> <td>27</td> <td>18</td> <td>多云~晴</td> <td>西北风</td> <td>4-5级</td> <td>37</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-07</th> <td>27</td> <td>16</td> <td>晴</td> <td>西北风</td> <td>3-4级</td> <td>22</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-08</th> <td>27</td> <td>15</td> <td>多云~晴</td> <td>北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-15</th> <td>26</td> <td>15</td> <td>多云</td> <td>北风</td> <td>3-4级</td> <td>42</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-16</th> <td>25</td> <td>14</td> <td>多云~晴</td> <td>北风</td> <td>1-2级</td> <td>29</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-17</th> <td>27</td> <td>17</td> <td>多云~阴</td> <td>北风</td> <td>1-2级</td> <td>37</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-18</th> <td>25</td> <td>17</td> <td>阴~多云</td> <td>西南风</td> <td>1-2级</td> <td>50</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-21</th> <td>25</td> <td>14</td> <td>晴</td> <td>西北风</td> <td>3-4级</td> <td>50</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-22</th> <td>24</td> <td>13</td> <td>晴</td> <td>西北风</td> <td>3-4级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-23</th> <td>23</td> <td>12</td> <td>晴</td> <td>西北风</td> <td>4-5级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-24</th> <td>23</td> <td>11</td> <td>晴</td> <td>北风</td> <td>1-2级</td> <td>28</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-25</th> <td>24</td> <td>12</td> <td>晴~多云</td> <td>南风</td> <td>1-2级</td> <td>44</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-29</th> <td>22</td> <td>11</td> <td>晴</td> <td>北风</td> <td>3-4级</td> <td>21</td> <td>优</td> <td>1</td> </tr> <tr> <th>2018-09-30</th> <td>19</td> <td>13</td> <td>多云</td> <td>西北风</td> <td>4-5级</td> <td>22</td> <td>优</td> <td>1</td> </tr> </tbody> </table> </div> 下载案例数据集 <div class="hideContent">此处内容需要评论回复后(审核通过)方可阅读。</div> 最后修改:2022 年 12 月 14 日 © 允许规范转载 打赏 赞赏作者 支付宝微信 赞 如果觉得我的文章对你有用,请随意赞赏